
CPF: Concept Profiling Framework for recurring
drifts in data streams

Robert Anderson, Yun Sing Koh, and Gillian Dobbie

Department of Computer Science, University of Auckland, New Zealand
rand079@aucklanduni.ac.nz, {ykoh,gill}@cs.auckland.ac.nz

Abstract. We propose the Concept Profiling Framework (CPF), a meta-
learner that uses a concept drift detector and a collection of classification
models to perform effective classification on data streams with recurrent
concept drifts, through relating models by similarity of their classify-
ing behaviour. We introduce a memory-efficient version of our frame-
work and show that it can operate faster and with less memory than
a näıve implementation while achieving similar accuracy. We compare
this memory-efficient version of CPF to a state-of-the-art meta-learner
made to handle recurrent drift and show that we can regularly achieve
improved classification accuracy along with runtime and memory use.
We provide results from testing on synthetic and real-world datasets to
prove CPF’s value in classifying data streams with recurrent concepts.
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1 Introduction

Classifying potentially infinite data streams requires a trade-off between accuracy
of our predictions and speed and memory use of our approach. This trade-
off is made more difficult by streams potentially changing over time i.e. the
underlying distribution of data changing (concept drift). Classification of streams
with drifting concepts benefits from drift handling techniques e.g. as described
in [1]. For example, if we detect a significant change in the underlying distribu-
tion, we can build a new model to learn anew from it, avoiding bias learnt from
previous distributions. However, we may lose all we have learnt up to that point.

Over time an underlying data-generating distribution may revert to a previously
seen state. Through recognising and understanding these recurring concepts we
can often perform better classification of incoming data in a stream by revert-
ing to previously trained models [2]. Repeated patterns are regularly observed
in the real world: seasons; boom-bust periods in financial markets; rush-hour
in traffic flows; and battery states of sensors, for example. Where these exist,
classification can be faster and more accurate by recognising and accounting for
them. Identifying repeated patterns improves our understanding of our modelled
problem. However, many state-of-the-art techniques use demanding statistical
tests or ensemble approaches to identify and handle recurring concepts. These
escalate memory use and increase runtime. In situations that rely on speed or
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low memory use, this overhead means these techniques cannot always be ap-
plied, and so recurring concepts will not be accounted for in the classification.
Through this work, we address this problem by proposing a classification frame-
work that utilises recurrent concepts while mininimising runtime and memory
usage overhead compared to current state-of-the-art techniques.

We present the Concept Profiling Framework (CPF). This is a meta-learning
approach that maintains a collection of classifiers and uses a drift detector. When
our drift detector indicates a drift state i.e. that our current classifier is no longer
suitable, we check our collection of classifiers for one better suited to the current
stream. If one meets a set level of accuracy, we will select it as the current
classifier; otherwise a new classifier is produced and trained on recent data.
If this new classifier behaves similarly to a classifier in our collection (using a
measure derived from conceptual equivalence [3]), we will choose that existing
classifier as our current model (i.e. model reuse); otherwise we will add the new
classifier to the collection and use that as our current classifier.

We introduce two techniques to allow efficient handling of recurrent con-
cepts. First, we regularly compare behaviour of our classifiers, and over time,
our certainty about their similarity will improve. If they behave similarly, we
can use the older model to represent the newer one. Second, we implement a
fading mechanism to constrain the number of models, a points-based system
that retains models that are recent or frequently used. Through observing reuse
patterns, we can understand how patterns recur in our stream.

Our contribution is a meta-learning framework that can: utilise observed
model behaviour over time to accurately recognise recurring concepts, without
relying on additional information about underlying concepts such as in [4]; and
regularly outperform a state-of-the-art learning framework, the Recurring Con-
cept Drifts framework (RCD [5]), in terms of accuracy, memory and runtime.

In the next section, we discuss related work that informed the creation of
CPF. We then detail our proposed framework. We provide experimental results
to: show that using our fading mechanism provides similar quality to a näıve
implementation of our algorithm whilst improving memory and runtime; show
our approach provides generally better accuracy than RCD, requiring less mem-
ory and runtime on eight synthetic datasets; and show CPF keeps this time
and memory efficiency while matching RCD in accuracy on five commonly used
real-world datasets. Next, we discuss the results and consider our technique in
greater detail. Finally, we conclude by summarising our findings and suggesting
sensible next steps for developing CPF.

2 Related work

In this section, we discuss the previous work that has informed our development
of CPF. Gama et al. [6] provide a fantastic overview of the problems faced while
learning in drifting streams and solutions that have been proposed. Since data
streams arrive incrementally, models such as Very Fast Decision Trees (VFDTs)
[7] have been created to be built incrementally. They achieve a constant time
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and memory relationship with the number of instances seen, and are guaranteed
to achieve performance similar to a conventional learner. This is through limit-
ing the number of examples required to be seen at any node through utilising
the Hoeffding bound [8], which describes the number of instances needed to be
representative of an overall dataset within a set probability.

Drift-detection mechanisms try to detect underlying concept drift, so a learn-
ing framework can take a corrective action. DDM (Drift Detection Mechanism)
[9] monitors the error rate of a classifier. When the mean error rate rises above
thresholds based on the minimum error rate seen, it signals a warning or drift.
EDDM (Early DDM) [10] introduces two changes to DDM. First, the mean
distance between errors is measured instead of error rate. Second, it changes
thresholds used for detecting warnings and drifts. Two user-set parameters, α
and β decide its sensitivity. If the mean distance drops β× 2s.d. below the min-
imum mean distance seen, the detector signals a warning, and below α × 2s.d.,
it signals a drift, where 1 > β > α. EDDM is made to detect drift more quickly
than DDM, with less evidence required.

The approach in [11] handles recurring concepts by building a referee’ model
alongside every instance a classifier sees, and keeps a collection of these pairs. The
referee model judges whether its classifier is likely to correctly classify an instance
by learning whether it was correct for previous similar instances. When existing
models aren’t applicable, a new model is created. Two models are trained at once
at any time, and no suggestions are made for constraining the total number of
models built over time.

Gomes et al. [4] propose using an additional user-specified context stream
alongside a data stream. Their approach relates the current context to the cur-
rent classifier when it is performing well. Particular contexts become associated
to classifiers that are useful in those contexts. After drift, a model is reused if the
context learner feels it fits the current context. Otherwise, a new classifier is cre-
ated. They use conceptual equivalence [3], which relates similar models through
their classifying behaviour. This technique requires an additional context stream
which is difficult to select for a problem that is not well understood.

Gonçalves and De Barros [5] propose RCD, a framework that maintains a
classifier collection. For each classifier, a set of recent training instances are stored
to represent its concept. When a drift is detected, a statistical test (k-NN) com-
pares the instances in the warning buffer to the training instances for classifiers.
If the instances are found to be significantly similar, it uses the corresponding
model; otherwise, a new one is created. The statistical testing and buffer stores
add significant runtime and memory requirements to their approach.

Ensemble approaches to recurrent learning use multiple classifiers examining
a stream, allowing greater chance to find one that functions well at a given time.
However, this gain in accuracy often comes with greater memory and runtime
overhead compared to single classifier techniques as shown in [12].
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3 Concept Profiling Framework (CPF)

In this section, we describe how our proposed technique functions. Our main
goal is a learning framework that can recognise recurring concepts through model
behaviour and use this to fit existing, pre-trained models rather than new models.

Fig. 1. The Concept Profiling Framework

We use a meta-learning framework (Figure 1) with a collection of one or
more incremental classifiers. One is designated as our current classifier. A drift
detector signals warning and drift states. On a warning state, the meta-learner
will stop training the current classifier and store instances from the data stream
in a buffer. If a drift state follows, the meta-learner looks for an existing model in
the collection that classifies the warning buffer accurately to use as the current
classifier. If it cannot find one, it will create a new model trained on even buffer
instances. When an existing model behaves similarly to this new model (when
tested on odd buffer instances) that model will be reused; otherwise the new
model is trained on odd buffer instances and used. Every model in the collection
is tested on the buffer, and the results will be compared and stored. Where
it is found that models classify similarly to one another, the older model will
represent the newer one.

Through regular reuse and representation of particular models (as described
below), we hope for particular classifiers to model particular concepts very well
over time. In addition, frequency of reuse and representation can show patterns
of recurrence in the underlying data. CPF can pair with any classifier that is
incremental and can perform in a streaming environment. We use Hoeffding
Trees using Näıve Bayes - a version of a CVFDT [13] which creates a Näıve Bayes
model at the leaves if it provides better accuracy than using the majority class.
This is consistent with the implementation of RCD that the authors suggest in
[5]. Our experiments use EDDM to be consistent with RCD. Technically, our
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technique can work using a drift detector that has no warning zone, but the
buffer will be of a set minimum size rather than informed by the drift detector.

3.1 Model similarity

Our approach uses a similarity measure based upon conceptual equivalence used
in [4] for comparing models. We adapt their approach and do pairwise com-
parisons of models’ respective errors when classifying given instances. When
comparing classifier ca and classifier cb, we calculate a score per instance, where
ca(x) and cb(x) is the classification error for ca and cb on a given instance x:

Score(x, ca, cb) =

{
1 if ca(x) = cb(x)

0 if ca(x) 6= cb(x)

We then calculate similarity for two models over a range of instances, using
instances X seen during warning drift periods:

Sim(X1...Xn, ca, cb) =
Σ(Score(X, ca, cb))

n

If Sim(X, ca, cb) ≥ m (m ≤ 1 and is a set similarity margin threshold), we
describe the models as similar and likely to represent the same concept. We re-
quire a minimum of thirty common instances seen by two classifiers before we
measure their similarity. Since new classifiers only train on even instances, we
collect at least sixty instances. Our score function provides a Binomial distribu-
tion, and the Central Limit Theorem indicates that as we see thirty examples
and beyond, this will approximate a Normal distribution. This gives assurance
of finding a representative mean Score between two classifiers.

Fig. 2. Example of calculating model similarity for classifiers c1...cnew on warn-
ing buffer X

Every time a drift occurs, all existing classifiers will classify instances in
the warning buffer. The results of each classifier will be compared as a bitwise
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comparison to see if they both had the same classification error. The similar-
ity matrix stores pairwise comparisons between classifiers, through recording
instances seen (or n) and total score (or Σ(Score(X, ca, cb))). We then check
for similar models. Figure 2 shows an example of four classifiers being com-
pared using a given warning buffer, with 0 representing a correct classification
and 1 an incorrect classification by the classifiers. Of ten instances (X) in our
buffer, we can see which our classifiers correctly or incorrectly classify, which
is the behaviour we measure to find their Sim. If m = 0.95, we can see that
Sim(X, cnew, c3) = 5/5 ≥ m), so could treat our models as similar. In practice,
we require instances in the buffer for that decision.

3.2 Reuse and representation

When a drift occurs, CPF will check if any existing classifiers are suitable to
reuse for the following data. This is by a two-step check. First, by checking from
the oldest classifier, if any classifier achieves ≥ m accuracy (our similarity margin
threshold), the model will be selected as the classifier to use. Otherwise, a new
classifier will be trained on even instances in the buffer, then prequential test-
and-trained on odd instances. If an old model has similarity ≥ m when tested
on odd instances in the buffer, we will reuse the old model, as it is similar to
the new model we would introduce. Our experiments suggest setting m as 0.95
for consistent performance across a range of datasets. This level should help
prevent CPF from incorrectly assuming model similarity without fair evidence
i.e. at least 95% similarity in behaviour as per classification errors. Lower values
of m allow model reuse and representation with less evidence of similarity.

When two classifiers behave similarly, we assume that both classifiers describe
the same concept. The older classifier is generally more valuable to keep, as it has
often been trained on more instances and been compared to other classifiers in
our collection more frequently. The older classifier represents the newer classifier
as follows: if it was the current classifier, the older model becomes the current
classifier; the older model receives the newer model’s fading points (described
below); and the newer model is removed from our collection. The older and newer
model behave similarly, so we lose little by retaining only the older model.

3.3 Fading

Data streams can be of infinite length, and over time, the classifier collection
in our framework may continually grow, risking an ever-expanding performance
overhead. To avoid this, we use a fading mechanism to constrain the size of
our classifier collection. Our fading mechanism prefers recent and frequently-
used classifiers, and penalises others. At any stage, we maintain an array of fade
points F . Fade points of a given classifier ca, Fca can be expressed as follows:

Fca =

{
0 if represented by older model

(r + 1)× f +
∑

(Fmca
)− (d− r) otherwise
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Here, r is drift points that a model is reused, f is a user-set parameter for
points to gain on creation and reuse, d is the number of drifts the classifier has
existed for (excluding the drift at which it is created) and

∑
(Fmca

) is the sum
of points for any models represented by ca. Every drift in which a model is not
reused, it loses a point, but when it is reused it gains f points. When newer
models are represented by an older model, the older model inherits the newer
model’s points. When Fca = 0, the model is deleted. The user can control the
size and number of models by selecting f . Removing models through fading gives
our technique less opportunity to identify similarity with previous models, so the
user can lose some information about recurrent behaviour through this step.

In our experiments, we set f to be 15. This is based on RCD’s maximum
of 15 models. This will constrain the total number of models to around that
number unless models are regularly reused. Where there is a zero reuse and
representation rate, we cannot have more than 15 models, and only have more
models when we have reused models that may represent recurrent concepts.

3.4 Model management in practice

Figure 3 illustrates how our technique maintains its collection of classifiers. For
the sake of simplicity, we have set f = 3 and m = 0.95.

Fig. 3. Example to illustrate reuse, representation and fading



8 R Anderson et al.

1. After drift point T in a stream, in which our warning buffer had 100 in-
stances, we have three models. Classifier c1 was reused for concept A, and
has just gained f points, while c2 and c3 lost a point each. Pairwise compar-
isons in the similarity matrix have been updated with the Score from 100
new instances seen in the warning buffer.

2. After drift T +1, no existing classifiers match the buffer or the new classifier,
so a new classifier becomes c4 and gains f points, while the others lose a point
each. Classifier c3 now has zero points and is deleted, so c4 → c3.

3. After drift T + 2, concept A recurs, and c1 matches the buffer through accu-
racy so gains f points and becomes the current classifier. The other two mod-
els lose a point each. Classifier c2 would be deleted, but now Sim(X, c2, c3) ≥
m so c3 is deleted and c2 represents c3, so gets its points.

4. After drift T + 3, concept B recurs, and c2 matches the buffer through ac-
curacy so gains f points while c1 loses a point.

4 Experimental Design and Results

To test CPF against RCD, we used the MOA API (available from http://

moa.cms.waikato.ac.nz). We used the authors’ version of RCD from https://

sites.google.com/site/moaextensions, keeping default parameters (includ-
ing limiting total models to a maximum of 15 at any given time). Experiments
were run on an Intel Core i5-4670 3.40 GHz Windows 7 system with 8 GB of
RAM. RCD and CPF maintain a buffer of instances if a detector is in a drift
state. This can cause variations in memory requirements over a small space of
instances so we excluded this buffer in our memory measurements for both. CPF
was run with f = 15, m = 0.95 and a minimum buffer size of 60.

4.1 Datasets

We used eight synthetic datasets for testing. Each had 400 drift points with
abrupt drifts and 10000 instances between each drift point. Concepts recurred
in a set order. Data stream generators used are available in MOA apart from
CIRCLES, which is described in [9]; we used a centre point of (0.5, 0.5) and
a radius ∈ {0.2, 0.25, 0.3, 0.35, 0.4} to represent different concepts for this. We
repeated experiments 30 times, and varied the random number seed. We present
the mean result and a 95% confidence interval; where these overlap, we have
no statistical evidence of a difference between results. EDDM for RCD and
CPF was run with its suggested settings of β = 0.95 and α = 0.9 on these
datasets. Settings used to generate our datasets are available online https:

//www.cs.auckland.ac.nz/research/groups/kmg/randerson.html.
Our five real-world datasets are commonly used to test data stream analy-

sis techniques. Electricity, Airlines and Poker Hand are available from http://

moa.cms.waikato.ac.nz/datasets; Network Intrusion is available from http:

//kdd.ics.uci.edu/databases/kddcup99/kddcup99.html; and Social Media
[14] is the Twitter dataset from https://archive.ics.uci.edu/ml/datasets/

http://moa.cms.waikato.ac.nz
http://moa.cms.waikato.ac.nz
https://sites.google.com/site/moaextensions
https://sites.google.com/site/moaextensions
https://www.cs.auckland.ac.nz/research/groups/kmg/randerson.html
https://www.cs.auckland.ac.nz/research/groups/kmg/randerson.html
http://moa.cms.waikato.ac.nz/datasets
http://moa.cms.waikato.ac.nz/datasets
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+
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Buzz+in+social+media+. EDDM for RCD and CPF was run with settings of
β = 0.9 and α = 0.85 on these datasets. Real-world datasets tend to be shorter
and noisier; making EDDM less sensitive avoids overly reactive drift detection.

4.2 CPF fading mechanism

For this experiment, we compared CPF with the fading mechanism and CPF
without. We compared accuracy, memory use, runtime, mean models stored
and mean maximum models stored in the classifier collection over the synthetic
datasets. As per Table 1, our fading mechanism caused slight losses in accuracy
for two datasets and a slight gain in another. Runtime and memory use were
never significantly worse for the fading approach and were significantly better
in most cases. Mean models and mean max models for the experiments show
that the fading mechanism significantly constrains the number of models pro-
duced. This provides evidence that the fading mechanism works as an effective
constraint for models considered by CPF and loses little accuracy.

Table 1. Effect of fading mechanism on CPF

4.3 CPF similarity margin

We tested CPF with different values of m on synthetic and real datasets and
ranked accuracy by m as per Table 2. For synthetic datasets, this was mean
accuracy across 30 trials. We compared how often a setting for m did worse
than most others i.e. was ranked 4th or 5th, as we wanted a setting that would
perform consistently over a variety of datasets.

We chose m = 0.95 for our experiments, as it received few bad rankings
for either synthetic or real datasets. Higher settings for m generally worked
well on synthetic datasets except for Agrawal and RandomRBF. Choosing m =
0.975 would be justifiable based on real-world datasets. These had no guaranteed

https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+
https://archive.ics.uci.edu/ml/datasets/Buzz+in+social+media+
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Table 2. Comparison of CPF accuracy across different levels of m

recurrence, so a higher setting for m could reduce spurious reuse of inappropriate
models, avoiding resulting drops in accuracy.

We also tested CPF with differing minimum buffer sizes (30, 60, 120, 180,
240). For these approaches, we compared accuracy, memory use, runtime and
drifts detected over the synthetic datasets. Our results showed some variation
in accuracy, memory and runtime based upon buffer size but showed no clear
discernable pattern across datasets.

4.4 Comparison with RCD on synthetic datasets

Fig. 4. Comparison of CPF and RCD on synthetic datasets

For this experiment, we compared CPF’s accuracy, memory and runtime
against RCD’s on eight synthetic datasets, as per Figure 4. CPF consistently
outperformed RCD in terms of memory usage and runtime. RCD stores a set



CPF: Concept Profiling Framework 11

of instances for each model, increasing memory usage, and runs k-NN to com-
pare these instances to the warning buffer which increases runtime. CPF was
always much faster, and reliably required less memory than RCD. CPF signif-
icantly outperformed RCD’s accuracy on all datasets except for RandomRBF.
RandomRBF creates complex problems through assigning classes to randomly
placed overlapping centroids: k-NN is well-suited for identifying the current con-
cept in this complex situation, while CPF relies on similarity between models’
behaviour which may be too inexact to identify the current concept.

4.5 Comparison with RCD on real-world datasets

For this experiment, we compared CPF’s performance against RCD’s on our five
real-world datasets in terms of accuracy, memory and runtime. As per Figure
5, CPF consistently used less memory and was faster than RCD, taking less
than 10% of the time of RCD for all datasets except for Airlines. In terms
of accuracy, CPF performed similarly with Airlines and Intrusion, better with
Poker and Social Media and worse with Electricity than RCD. CPF’s accuracy is
closer to RCD’s than seen in our tests with synthetic data. These real datasets
are shorter, often tend to be noisier and may not genuinely feature recurring
concepts. This is likely to impact the techniques’ relative performance.

Fig. 5. Comparison of CPF and RCD on real-world datasets

5 Conclusion and further work

We have proposed CPF as a fast, memory-efficient, accurate framework for
analysing streams with recurring concept drift. Through tracking similarity of
model behaviour over the life of our stream, we can regularly reuse suitable
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models that have already been trained when a drift occurs. This avoids the need
to train from scratch, and provides valuable insight on the recurrent patterns
in drift for our data stream. Through our experiments, we have shown that our
proposed approach is often more accurate than a state-of-the-art framework,
RCD, while consistently requiring less memory and running much faster than
this framework, on both synthetic and real-world datasets.

Future work to develop this technique could include: developing our similar-
ity measure so that it considers classification and not just error in multi-class
problems; finding ways to prioritise model-comparisons as part of our model
similarity approach; investigating ways of combining or merging models where
they are similar; and utilising our similarity measure/representation approach
to simplify and speed up ensemble approaches to recurring drifts.
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